Thursday, January 26, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Medical Countermeasures

New Design May Create More Effective Salmonella-Based Vaccines

by Global Biodefense Staff
August 7, 2013

Biodefense Vaccine ProgramResearch from the Arizona State University Biodesign Institute describes efforts to improve the effectiveness of a Recombinant Attenuated Salmonella Vaccine (RASV) by modifying its ability to survive the hostile environment of the stomach.

The researchers demonstrated experimental strategies to restore acid resistance in several Salmonella vaccine strains, thereby improving their ability to survive low pH conditions in the stomach. The improved survival rate allows more of the bacterial cells to continue their infection sequence, colonizing intestinal tissues and generating a strong immune response.

Further, the acid resistant vaccine strains may behave more like unmodified Salmonella, which are cued by low pH conditions to prepare for the later stages of the infection process by up-regulating a key suite of genes involved in host interactions. These factors, the authors suggest, may significantly improve the effectiveness of Salmonella vaccines. 

These results were recently published in the Journal of Bacteriology. 

“Even though wild-type strains of Salmonella are quite capable of surviving the acidic environment of the stomach, it is surprisingly difficult to deliver a live Salmonella vaccine orally,” Brenneman says.  “Many vaccines have mutations that leave them especially vulnerable to low pH, which means a large proportion of the vaccine cells are killed before they reach the intestine and thus are unable to do their job of delivering vaccine targets to the immune system.  We’re trying to compensate for that increased acid sensitivity by increasing expression of the normal acid resistance systems.”

At the Biodesign Institute’s Center for Infectious Diseases and Vaccinology at ASU, researchers have been harnessing Salmonella’s impressive ability to infiltrate human tissues and stimulate immune responses, producing Salmonella-based vaccines targeting a range of illnesses. One such vaccine – developed by the group and currently in Phase I FDA trials – targets infant pneumonia, a disease that continues to kill some 2 million people per year, many of them in the developing world. 

Such vaccines are attractive for a number of reasons. They can typically be produced much more cheaply than conventional vaccines, they may be delivered orally rather than through injection and can confer long-term immunity without the requirement of a subsequent booster dose. Further, Salmonella powerfully stimulates both cellular and humoral immunity, producing a robust, systemic response in the vaccine recipient.

The basic idea behind RASVs is to genetically retool the Salmonella bacterium in such a way that it retains its strong, immunogenic properties without causing illness. It is then outfitted with antigens for the particular disease the vaccine is designed to protect against. This Trojan-horse method introduces the disease antigens hidden in the Salmonella carrier, which then stimulate the immune responses.

But as the authors of the current study explain, the promising technique—potentially applicable for vaccines against virtually any pathogen—is not without its challenges. One of the most significant hurdles concerns the ability of Salmonella to survive the harsh environment of the stomach, where highly acidic (low pH) conditions prevail.

Read the rest of the story at the Biodesign Institute. 

Tags: SalmonellaVaccines

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
How Are Bivalent COVID Vaccines Stacking Up Against Omicron?
Infectious Diseases

How Are Bivalent COVID Vaccines Stacking Up Against Omicron?

January 12, 2023
Load More

Latest News

Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023
Biodefense Headlines – 17 January 2023

Biodefense Headlines – 17 January 2023

January 17, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC