Close Menu
    Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    CBRNE

    DARPA Contract to SRI for Fold F(x) Synthetic Polymer Program

    By Global Biodefense StaffFebruary 11, 2015
    Genomic Sequencing Standards USAMRIID
    Image credit: Shutterstock
    Share
    Facebook LinkedIn Reddit Email

    SRI Biosciences, a division of SRI International, has been awarded a $10 million contract under a DARPA program to reimagine how proteins are constructed and to develop novel medicines and diagnostics as countermeasures to chemical and biological threats.

    The new contract is part of DARPA’s Folded Non-Natural Polymers with Biological Function program, known as Fold F(x). The initial goal of the program is to develop biologically active non-natural polymers that are structurally similar to naturally occurring proteins, but without their limitations, such as sensitivity to heat denaturation or chemical degradation.

    To develop the new polymers, SRI is combining its expertise in medicinal chemistry and biopolymer design with a breakthrough approach to screening vast numbers of compounds. The novel polymers are being made from entirely new types of monomer structures based on drug-like scaffolds with high functional group density.

    SRI’s compound screening innovation is based on its proprietary Fiber-Optic Array Scanning Technology (FASTcell). Originally developed to identify circulating tumor cells in a blood sample, FASTcell can distinguish a single tumor cell among tens of millions of healthy ones in a few minutes. With DARPA support, SRI is expanding this technology to screen 25 million compounds in just one minute.

    “Our goal is to develop a method that can enable rapid, large-scale responses to a bioterrorism threat or an infectious disease epidemic,” said Peter Madrid, Ph.D., program director in SRI Biosciences’ Center for Chemical Biology and co-principal investigator and leader of the chemistry effort of the project. “We are looking for non-natural polymers to detect or neutralize identified chemical or biological threats. Once we find potent molecules, we will be able to produce them at mass on a large scale.”

    The overall goal of the Fold F(x) program is to expand on the utility of proteins and DNA, and to overcome their limitations by re-engineering their polymer backbones and side chain diversity—creating new molecules with improved functionality such as stability, potency and catalytic function in environments usually hostile for biopolymers.

    The knowledge to design new functional molecules from first principles doesn’t exist yet. The alternative is to synthesize enormous libraries of non-natural polymers and screen for sequences that have a desired action. Finding a single effective compound, such as one that can block a virus, may require screening hundreds of millions of compounds.

    “We are taking a full departure from how nature does things to come up with new ways of mimicking protein function in a highly tailored and controlled way,” said Nathan Collins, Ph.D., executive director of SRI Biosciences’ Discovery Sciences Section and principal investigator of SRI’s Fold F(x) project. “Our breakthrough has been to adapt SRI’s FASTcell technology to screen libraries of non-natural polymers. It’s very exciting to be doing such novel research.”

    Initially the program will focus on screening massive numbers of non-natural polymers for potential uses against security threats. As a proof of concept, the team will design, synthesize and screen chemically unique libraries of 100 million non-natural polymers for activity against a variety of agents, including toxins such as ricin and viruses such as the H1N1 bird flu strain of influenza.

    As the program evolves it may progress to include a range of possibilities, such as how to synthesize molecules to fold such that they emit light, have enhanced levels of strength or elasticity, or store power.

    Awards Bioterrorism DARPA Ricin Synthetic Biology
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleResearchers Warn of Higher Mesothelioma Risk in Nuclear Plant Workers
    Next Article Biocartis, Janssen Developing Rapid Ebola Triage Test

    Related Stories

    ARPA-H Announces New Tiered Proposal Submission System to Reduce Applicant Barriers

    December 5, 2023

    Needle-Free Vaccine Patch Against Zika Virus

    December 2, 2023

    Virginia Tech Lab Selected for National Partnership to Fight Emerging Diseases

    November 14, 2023

    NanoViricides’ Phase 1 Broad-Spectrum Antiviral Highly Effective for Mpox and Smallpox

    November 14, 2023
    News Scan

    Biodefense Headlines – 30 November 2023

    News Scan November 30, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include the largest ever outbreak of mpox in the DRC; launch of National Wastewater Surveillance Program dashboard; low uptake of COVID-19 boosters and flu vaccines;…

    Upcoming Events

    Dec 5
    10:45 am - 3:00 pm EST

    Meeting the Moment: Biodefense Policy, Procurement, and Public Health

    Dec 6
    Virtual Event Virtual Event
    6:00 am - 7:00 am EST

    AMR One Health Priority Research Agenda: Transmission

    Mar 12
    Virtual Event Hybrid Event
    March 12, 2024 - March 17, 2024

    2024 Fungal Genetics Conference

    Mar 21
    March 21, 2024 - March 23, 2024

    ASPPH 2024 Annual Meeting

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    News on pathogens and preparedness for public health emergencies

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.