From Our Partners
Sunday, June 26, 2022
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Featured News

Virus Carrying DNA of Black Widow Spider Toxin Discovered

by Global Biodefense Staff
October 12, 2016
Black Widow Spider

Western Black Widow (Latrodectus hesperus). Credit: Wikipedia

Black Widow Spider
Western Black Widow (Latrodectus hesperus). Credit: Wikipedia

A pair of Vanderbilt biologists made a surprising discovery when they sequenced the genome of a virus that attacks Wolbachia, a bacterial parasite: DNA related to black widow spider toxin.

“Discovering DNA related to the black widow spider toxin gene came as a total surprise because it is the first time that a phage – a virus that infects bacteria – has been found carrying animal-like DNA,” said Associate Professor of Biological Sciences Seth Bordenstein.

He and Senior Research Specialist Sarah Bordenstein reported the results of their study in a paper published this week in the journal Nature Communications.

Normally phages, like the WO phage that they studied, carry specialized genes that break open and defeat the defenses of the prokaryotic bacterial cells they target. But in this case, “the portion of DNA related to the black widow spider toxin gene is intact and widespread in the phage,” said Bordenstein. “There is also evidence that the phage makes insecticidal toxins, but we are not certain yet how these are utilized and administered.”

The scientists also found that WO shares a number of other segments of DNA with animal genomes. These include a sequence that the eukaryotic cells found in animals use to sense pathogens, which is also involved in triggering cell death. In addition, there were several genes that the cells use to evade immune responses. “These sequences are more typical of eukaryotic viruses, not phages,” Bordenstein commented.

He speculated that the reason WO is exceptional in this regard is due to the life history of its target. Once Wolbachia infect a host arthropod, it wraps itself in a layer of the arthropod’s membrane. As a result, the phage has to force its way through these eukaryotic membranes in order to enter or escape.

“We suspect it makes pores in the membranes of the arthropod cells that surround Wolbachia, thereby allowing the phage to overcome both the bacterial and arthropod membranes that surround it. That may be how it uses some of these proteins” he said.

Their sequencing and bioinformatic efforts also allowed the Bordensteins to identify the genetic sequences that phage WO uses to insert its genome into the Wolbachia chromosome. This information may provide a basic toolkit that can be used to genetically engineer the bacterium.

This capability could be used to enhance ongoing efforts that use Wolbachia to fight dengue fever and Zika virus. It turns out that Wolbachia prevents these viruses from reproducing in Aedes aegypti mosquitoes that spread them. Infecting and spreading mosquitoes with Wolbachia has been successfully field tested in Australia, Brazil, Columbia, Indonesia and Vietnam.

Use of the bacterial parasite has two potential advantages compared to other approaches: It doesn’t rely on toxic chemicals and, once it is introduced, the bacteria spread rapidly through the mosquito population and sustain themselves.

“The ability to genetically engineer Wolbachia could lead to inserting genes that cause the bacteria to produce traits that increase the effectiveness of using Wolbachia against dengue and Zika viruses. It could also be used to combat other agricultural pests,” the biologist said.

Bordenstein began studying the WO 15 years ago because he was curious about how such a virus survives and flourishes in a symbiotic bacteria like Wolbachia that has a very small genome. “At the time, some of my colleagues asked why I was studying such an obscure subject,” he recalled.

Several years ago, Bordenstein and his colleagues felt that they had answered the major scientific questions involving the phage, but they decided to sequence its genome for completeness sake. They had no idea that their analysis would produce information that provides fresh insights in virology and could possibly aid efforts to reduce or eradicate a number of diseases which have afflicted humans for millennia.

Read the study: Eukaryotic association module in phage WO genomes from Wolbachia.

From Our Partners

Related Posts

Chronic Wasting Disease: The Fatal Prion Infection Killing Elk and Deer in North America
Infectious Diseases

Chronic Wasting Disease: The Fatal Prion Infection Killing Elk and Deer in North America

June 10, 2022
Pathogens

How a COVID-19 Infection Spurs Antibodies Against Common Colds

May 8, 2022
Send in the Blow Flies: Using Insects to Sample Areas for Chemical Warfare Agents
CBRNE

Send in the Blow Flies: Using Insects to Sample Areas for Chemical Warfare Agents

April 11, 2022
Johns Hopkins: Chemical in Leafy Greens May Slow Growth of Coronaviruses
Pathogens

Johns Hopkins: Chemical in Leafy Greens May Slow Growth of Coronaviruses

April 11, 2022
Load More

Latest News

Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps

Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps

June 22, 2022
Monkeypox Diagnostics: CDC Authorizes Five Commercial Lab Companies

Monkeypox Diagnostics: CDC Authorizes Five Commercial Lab Companies

June 22, 2022
UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

June 21, 2022
Influenza Research

New Way to Identify Influenza A Virus Lights Up When Specific Virus Targets are Present

June 20, 2022

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC