Wednesday, August 10, 2022
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

Foodborne Pathogens: Colorimetric and Electrochemical Detection Using Printed Paper

by Global Biodefense Staff
March 13, 2017
E. coli bacteria

E. coli bacteria

In a new study in Analytical Chemistry, scientists report that they are closing in on a way to use a combination of color-changing paper and electrochemical analysis — on plastic transparency sheets or simple paper — to quickly, cheaply and more accurately detect bacterial contamination of fruits and vegetables before they reach consumers.

Of all the contaminants found in food and water, bacteria cause the most hospitalizations and deaths in the United States. Nearly half of these incidents are attributed to spinach, cabbage, lettuce and other leafy greens, which are sometimes irrigated with unsafe water containing fecal material.

Federal regulations require frequent testing of fruits and vegetable for bacterial contamination. But traditional lab cultures take up to 48 hours to produce results, and other techniques such as DNA amplification and immunoassays are more costly.

Electrochemical sensors like this one could soon make detecting harmful bacteria in foods faster and more accurate. Credit: Charles S. Henry

Recently, Charles S. Henry and colleagues from Colorado State University developed a paper-based method to detect Salmonella, Listeria and E. coli in food and water samples. In their latest study, Henry’s team wanted to see if it would be feasible to use this paper-based technique in conjunction with electrochemical analysis to produce more refined results.

To simulate contaminated food, the researchers exposed clean alfalfa sprouts to E. coli and Enterococcus faecalis bacteria. They also collected unfiltered water from a nearby lagoon. For colorimetric detection, the team built a simple light box, which served as a substitute for a laboratory plate reader. Then they used a smartphone to take a series of images of the 84 paper-based well plates over time. For the electrochemical portion of the experiment, they used a series of electrodes printed onto plastic transparency sheets.

Both approaches used the same assays to successfully detect harmful bacteria in the samples within 4 to 12 hours, and both produced complementary findings. They conclude that combining their paper-based technique with electrochemistry could lead to a simpler, yet more comprehensive way to detect bacterial contaminants in food and water.

Learn more: Colorimetric and Electrochemical Bacteria Detection Using Printed Paper- and Transparency-Based Analytic Devices.

Tags: Agro-DefenseE. coliFood Safety

Related Posts

Long COVID: National Academies’ Panel Examines Long-Term Health Effects of COVID-19
Public Health

Long COVID: National Academies’ Panel Examines Long-Term Health Effects of COVID-19

July 17, 2022
Does the Current Monkeypox Outbreak Qualify as an Epidemic, PHEIC, or Pandemic?
Outbreak News

Does the Current Monkeypox Outbreak Qualify as an Epidemic, PHEIC, or Pandemic?

July 15, 2022
Tagged livestock in a row
Biosecurity

Consider Farmers at Individual Level When Controlling Livestock Disease Outbreaks

July 15, 2022
Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps
Outbreak News

Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps

June 22, 2022
Load More

Latest News

Bacteria That Causes Melioidosis Confirmed in Environmental Samples in Mississippi Gulf Coast

Bacteria That Causes Melioidosis Confirmed in Environmental Samples in Mississippi Gulf Coast

July 27, 2022
Monkeypox Transmission: Virus Detected in Saliva, Bodily Fluids

Monkeypox Transmission: Virus Detected in Saliva, Bodily Fluids

July 17, 2022
Influenza Transmission Spikes During Social Gatherings

New Universal Flu Vaccine Offers Broad Protection Against Influenza A Virus Infections

July 17, 2022
Long COVID: National Academies’ Panel Examines Long-Term Health Effects of COVID-19

Long COVID: National Academies’ Panel Examines Long-Term Health Effects of COVID-19

July 17, 2022

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC