Friday, March 17, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

WashU Researchers Granted Federal Funding for Plasmonic-Fluor Rapid SARS-CoV-2 Test

Gold nanoparticles coated with conventional dyes create an 'ultrabright flashlight' nanolabel capable of detecting extremely small amounts of target biomolecules

by Global Biodefense Staff
April 20, 2020
WashU Researchers Granted Federal Funding for Plasmonic-Fluor Rapid SARS-CoV-2 Test

Plasmonic-Fluor Biosensor: Researchers developed a rapid, highly sensitive biosensor based on an ultrabright fluorescent nanoprobe, Credit: Washington University in St. Louis

Engineers at the McKelvey School of Engineering at Washington University in St. Louis have received federal funding for a rapid COVID-19 test using a newly developed technology.

Called plasmonic-fluor, the ultrabright fluorescent nanoprobe can also help in resource-limited conditions because it requires fewer complex instruments to read the results.

Srikanth Singamaneni, professor of mechanical engineering and materials science, and his team have developed a rapid, highly sensitive and accurate biosensor based on an ultrabright fluorescent nanoprobe, which has the potential to be broadly deployed.

Singamaneni hypothesizes their plasmonic-fluor-based biosensor will be 100 times more sensitive compared with the conventional SARS-CoV-2 antibody detection method. Increased sensitivity would allow clinicians and researchers to more easily find positive cases and lessen the chance of false negatives.

Plasmonic-fluor works by turning up the brightness of fluorescent labels used in a variety of biosensing and bioimaging methods. In addition to COVID-19 testing, it could potentially be used to diagnose, for instance, that a person has had a heart attack by measuring the levels of relevant molecules in blood or urine samples.

Using plasmonic-fluor, which is composed of gold nanoparticles coated with conventional dyes, researchers have been able to achieve up to a 6,700-fold brighter fluorescent nanolabel compared with conventional dyes, which can potentially lead to early diagnosis. Using this nanolabel as an ultrabright flashlight, they have demonstrated the detection of extremely small amounts of target biomolecules in biofluids and even molecules present on the cells.

The study was published in the April 20 issue of Nature Biomedical Engineering.

In biomedical research and clinical labs, fluorescence is used as a beacon to see and follow target biomolecules with precision. It’s an extremely useful tool, but it’s not perfect.

“The problem in fluorescence is, in a lot of cases, it’s not sufficiently intense,” Singamaneni said. If the fluorescent signal isn’t strong enough to stand out against background signals, just like fireflies against the glare of the sun, researchers may miss seeing something less abundant but important.

“Increasing the brightness of a nanolabel is extremely challenging,” said Jingyi Luan, lead author of the paper. But here, it’s the gold nanoparticle sitting at the center of the plasmonic-fluor that really does the work, acting as an antenna, strongly absorbing and scattering light. That highly concentrated light is funneled into the fluorophore placed around the nanoparticle. In addition to concentrating the light, the nanoparticles speed up the emission rate of the fluorophores. Taken together, these two effects increase the fluorescence emission.

Essentially, each fluorophore becomes a more efficient beacon, and the 200 fluorophores sitting around the nanoparticle emit a signal that is equal to 6,700 fluorophores.

In addition to detecting low quantities of molecules, sensing time can be shortened using plasmonic-fluor as brighter beacons mean fewer captured proteins are needed to determine their presence.

The researchers have also shown that plasmonic-fluor allows the detection of multiple proteins simultaneously. And in flow cytometry, plasmonic-fluor’s brightening effect allows for a more precise and sensitive measurement of proteins on cell surface, whose signal may have been buried in the background noise using traditional fluorescent tagging.

There have been other efforts to enhance fluorescent tagging in imaging, but many require the use of an entirely new workflow and measurement platform. In addition to plasmonic-fluor’s ability to greatly increase the sensitivity and decrease the sensing time, it doesn’t require any changes to existing laboratory tools or techniques.

The technology has been licensed to Auragent Bioscience LLC by Washington University’s Office of Technology Management. Auragent is in the process of further development and scaling up the production of plasmonic-fluors for commercialization.

Ultrabright fluorescent nanoscale labels for the femtomolar detection of analytes with standard bioassays, Nature Biomedical Engineering. Published 20 Aprill 2020. DOI: 10.1038/s41551-020-0547-4.

Tags: AwardsCOVID-19Editor PickRapid DiagnosticsSARS-CoV-2

Related Posts

New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
Researcher holds a pipette
Biodetection

These Nanotech Bubbles Burst When They Detect Viruses in the Air

October 25, 2022
Influenza Research
Biodetection

New Way to Identify Influenza A Virus Lights Up When Specific Virus Targets are Present

June 20, 2022
NIH to Further Invest in Point-of-Care Technologies Research Network
Biodetection

NIH to Further Invest in Point-of-Care Technologies Research Network

May 10, 2022
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy