Saturday, May 21, 2022
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biosecurity

A Replaceable, More Efficient Filter for N95 Masks

by Global Biodefense Staff
May 21, 2020
A Replaceable, More Efficient Filter for N95 Masks

Illustration: A replaceable nanoporous membrane, N95 mask filters out particles the size of SARS-CoV-2 (purple circles), allowing only clean air (blue circles) through. Credit: ACS Nano 2020

Since the outbreak of COVID-19, there’s been a worldwide shortage of face masks — particularly, the N95 ones worn by health care workers. Although these coverings provide the highest level of protection currently available, they have limitations. Now, researchers reporting in ACS Nano have developed a membrane that can be attached to a regular N95 mask and replaced when needed. The filter has a smaller pore size than normal N95 masks, potentially blocking more virus particles.

N95 masks filter about 85% of particles smaller than 300 nm. SARS-CoV-2 (the coronavirus that causes COVID-19) is in the size range of 65-125 nm, so some virus particles could slip through these coverings. Also, because of shortages, many health care workers have had to wear the same N95 mask repeatedly, even though they are intended for a single use. To help overcome these problems, Muhammad Mustafa Hussain and colleagues wanted to develop a membrane that more efficiently filters particles the size of SARS-CoV-2 and could be replaced on an N95 mask after every use.

To make the membrane, the researchers first developed a silicon-based, porous template using lithography and chemical etching. They placed the template over a polyimide film and used a process called reactive ion etching to make pores in the membrane, with sizes ranging from 5-55 nm. Then, they peeled off the membrane, which could be attached to an N95 mask. To ensure that the nanoporous membrane was breathable, the researchers measured the airflow rate through the pores. They found that for pores tinier than 60 nm (in other words, smaller than SARS-CoV-2), the pores needed to be placed a maximum of 330 nm from each other to achieve good breathability. The hydrophobic membrane also cleans itself because droplets slide off it, preventing the pores from getting clogged with viruses and other particles.

A Flexible Nanoporous Template for the Design and Development of Reusable Anti-COVID-19 Hydrophobic Face Masks. ACS Nano. 20 May 2020. DOI: 10.1021/acsnano.0c03976


This information is not intended as medical advice or clinician guidance. This content contains edited excerpts to bring attention to the work of the researchers and study authors. Please support their efforts and click through for the full context.

Tags: Airborne TransmissionCOVID-19Frontline RespondersIndividual ProtectionNonpharmaceutical InterventionsSARS-CoV-2

Related Posts

U.S. Fish and Wildlife Service Opens Grant Program to Shore Up Avian Flu Biosecurity
Biosecurity

U.S. Fish and Wildlife Service Opens Grant Program to Shore Up Avian Flu Biosecurity

April 13, 2022
Send in the Blow Flies: Using Insects to Sample Areas for Chemical Warfare Agents
CBRNE

Send in the Blow Flies: Using Insects to Sample Areas for Chemical Warfare Agents

April 11, 2022
Johns Hopkins: Chemical in Leafy Greens May Slow Growth of Coronaviruses
Pathogens

Johns Hopkins: Chemical in Leafy Greens May Slow Growth of Coronaviruses

April 11, 2022
Bird Flu is Killing Millions of Chickens and Turkeys Across the US
Biosecurity

Bird Flu is Killing Millions of Chickens and Turkeys Across the US

April 7, 2022
Load More

Latest News

NIH to Further Invest in Point-of-Care Technologies Research Network

NIH to Further Invest in Point-of-Care Technologies Research Network

May 10, 2022

How a COVID-19 Infection Spurs Antibodies Against Common Colds

May 8, 2022
Hospitals Resilience to Extreme Events: One-Third of Staff May Be Lost During a Disaster

Hospitals Resilience to Extreme Events: One-Third of Staff May Be Lost During a Disaster

May 6, 2022
Where is Testing Needed Most During Pandemic Surges? WVU Researchers Develop Machine Learning Prediction Tools

Where is Testing Needed Most During Pandemic Surges? WVU Researchers Develop Machine Learning Prediction Tools

May 6, 2022

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC