Thursday, March 30, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

NIST Develops Inexpensive Cell Assay on a Chip

by Global Biodefense Staff
June 21, 2012

Researchers at the National Institute of Standards and Technology (NIST) have created a new microfluidic device out of ordinary, inexpensive components.  Led by engineer Javier Atencia, the “diffusion-based gradient generator” basically turns a glass slide, plastic sheets and double-sided tape into a tool to rapidly assess how changing concentrations of specific chemicals affect living cells.

The method offers a simple and inexpensive way to expose an array of cultured cells to a chemical gradient—a solution where the chemical concentration changes gradually and predictably across the array. Using such a gradient is a rapid, high-throughput way to evaluate the effect on cell growth or toxicity.

The gradient is created by diffusion, which is the gentle movement of matter from one point to another by random molecular motion. Conventional microfluidic systems usually mix fluids by pumping them in a circular motion or by twisting and folding them together. The advantage of diffusion over conventional systems is a great reduction in the risk of cells being swept away or damaged by shearing forces in the test fluid. (Source: NIST Tech Beat)

The gradient generator is built in layers, with each section precisely positioned with an alignment tab. The base is a glass slide, upon which is attached a strip of double-sided tape cut to have a row of four micrometer-sized channels. On top of this is a polystyrene strip cut to have two lines each of four tiny circular “wells” where each pair lines up with the ends of the channel below it. The next layer is another strip of double-sided tape, this time with a Y-shaped canal cut into it to serve as the flow path for the chemical gradient. Finally, a Mylar strip cut to have an identical Y-canal serves as the cover.

Once the test cells are added, the hinged cover is lowered and affixed, sealing the gradient generator. Magnetic connectors are used to accomplish fluid flow in and out of the system. Kept at constant pressure, this flow assures a steady-state stream through the device and creates a diffusion gradient in each buried channel. Cells in the channels are simultaneously exposed to a range of chemical concentrations from high to low.

For more information access: J. Atencia, et al. A robust diffusion-based gradient generator for dynamic cell assays. Lab on a Chip, Vol. 12, Pages 309-315 (2012). DOI: 10.1039/C1LC20829B

Image courtesy of Cooksey/NIST

Related Posts

Medical Countermeasures

Scientists Design Molecule to Slow SARS-Cov-2 Infection

March 29, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
Load More

Latest News

Scientists Design Molecule to Slow SARS-Cov-2 Infection

March 29, 2023

Biodefense Headlines – 26 March 2023

March 26, 2023
Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC