From Our Partners
Wednesday, June 22, 2022
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Antimicrobial Resistance

New Inhibitors Could Help with Treatments for Anthrax, MRSA

by Global Biodefense Staff
November 26, 2013

Inhibitor compounds developed by UC Irvine structural biologists and Northwestern University chemists have been shown to bolster the ability of antibiotics to treat deadly bacterial diseases such as MRSA and anthrax.

The discovery by UC Irvine’s Thomas Poulos and Northwestern’s Richard Silverman builds on previous work in which they created compounds that inhibit an enzyme called neuronal nitric oxide synthase. These have demonstrated the potential to treat neurodegenerative diseases by blocking overproduction of cell-killing nitric oxide within neurons.

Now the researchers are learning that the compounds may have another important function. After Poulos and Silverman read a study suggesting that nitric oxide synthase helped pathogenic bacteria resist antibiotics, their laboratory teams paired the inhibitor compounds with currently used antibiotics to see if they could suppress NOS – and increase the antibiotics’ effectiveness.

“We found that NOS inhibitors were extremely successful at inhibiting neurodegeneration in an animal model, and if they could be successful combating other diseases, we wanted to identify that as quickly as possible to help other people,” said Poulos, Chancellor’s Professor of biochemistry, chemistry and pharmaceutical sciences at UC Irvine.

The researchers tested their compounds on Bacillus subtilis, nonpathogenic bacteria very similar toStaphylococcus aureus (known as MRSA), and Bacillus anthracis, which causes anthrax. Bacteria treated with the NOS inhibitors and an antibiotic were killed off more efficiently and completely than bacteria treated with only an antibiotic. The scientists then compared the three-dimensional structure of the inhibitors bound to the bacterial NOS with those bound to the neuronal NOS and determined that they bonded quite differently.

“Now that we know which region of the NOS to target, we should to be able to develop compounds that selectively bind to bacterial NOS,” Poulos said, adding that his team will also need to try out those compounds in animal models.

The study, published in the Oct. 31 issue of Proceedings of the National Academy of Sciences, was supported by National Institutes of Health grants.

Source: UC Irvine

From Our Partners
Tags: Animal ModelsAnthraxAntimicrobialsBioterrorismMRSA

Related Posts

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control
Medical Countermeasures

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

June 21, 2022
Biodefense Industry News
Industry News

Tonix Pharmaceuticals Opens Advanced Development Center for Vaccine Programs

June 20, 2022
Monkeypox Cases Prompt Additional Contracts for Bavarian Nordic Vaccine
Medical Countermeasures

Monkeypox Cases Prompt Additional Contracts for Bavarian Nordic Vaccine

May 30, 2022
Novavax Missed Its Global Moonshot but Is Angling to Win Over mRNA Defectors
Industry News

Novavax Missed Its Global Moonshot but Is Angling to Win Over mRNA Defectors

May 26, 2022
Load More

Latest News

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

June 21, 2022
Influenza Research

New Way to Identify Influenza A Virus Lights Up When Specific Virus Targets are Present

June 20, 2022
Biodefense Industry News

Tonix Pharmaceuticals Opens Advanced Development Center for Vaccine Programs

June 20, 2022
Biodefense Headlines – 16 June 2022

Biodefense Headlines – 16 June 2022

June 16, 2022

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC