Friday, March 17, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Medical Countermeasures

NIH Projects Advance Treatment for Acute Radiation Syndrome, TBI

by Global Biodefense Staff
December 17, 2013

The National Institutes of Health today has launched three pre-clinical projects to advance potential new treatments for acute radiation syndrome, brain injury following cardiac arrest and a rare blood disorder called beta thalassemia. The projects are part of the Bridging Interventional Development Gaps (BrIDGs) program, which is funded by the NIH Common Fund and led by NIH’s National Center for Advancing Translational Sciences (NCATS).

BrIDGs provides eligible scientists with no-cost access to contractor services, such as toxicology studies, for pre-clinical therapeutic development. To be eligible for the program, projects must have been effective in a disease model. Researchers often apply to BrIDGs because they have hit a roadblock and need additional expertise or lack other resources. Rather than funding successful applicants directly, BrIDGs supports expert NIH contractors who perform pre-clinical services for the researchers free-of-charge.

“BrIDGs researchers and partner scientists work together to bridge the gap between a basic discovery and clinical testing, thereby ensuring potential treatments have a chance to reach patients who need them,” said Christopher P. Austin, M.D., NCATS director.  

A primary goal of a BrIDGs project is the submission of an Investigational New Drug (IND) application to the U.S. Food and Drug Administration to begin human clinical trials. To date, BrIDGs scientists have generated data to support 12 INDs submitted to the FDA, as well as one clinical trial application to Health Canada. They also have evaluated 12 of the 13 projects in clinical trials. Three BrIDGs-supported therapeutic agents have gone as far as Phase II clinical trials, in which researchers provide an experimental therapy to a group of patients to evaluate its safety and effectiveness. Third-party investors have licensed seven compounds during or after their development through the BrIDGs program. 

BrIDGs scientists selected the following new projects from the 2013 application solicitation:

Acute Radiation Syndrome
Manufacturing of RLIP76-LyoPL for Acute Radiation Syndrome
Henry Hebel, M.B.A., vice president of drug development
Terapio Corp., Austin, Texas

Exposure to radiation, whether from a compromised nuclear reactor or a radiation weapon, can lead to acute radiation syndrome, a life-threatening multi-organ illness. Currently, there is no FDA-approved treatment for the syndrome. This project is designed to develop a treatment that can be administered beginning 24 hours or longer after radiation exposure. NIH’s National Institute of Allergy and Infectious Diseases is co-funding the pre-clinical studies for this project through its Radiation Nuclear Countermeasures Program.

Beta Thalassemia 
The Development of Minihepcidins for the Treatment of Beta Thalassemia 
Brian MacDonald, Ph.D., president and CEO
Merganser Biotech LLC, Newtown Square, Pa.

Patients with beta thalassemia, a rare inherited blood disorder, suffer from severe anemia and iron overload that can damage the heart. The disorder reduces production of hepcidin, the iron regulatory hormone. The goal of this project is to develop a treatment that increases levels of hepcidin and lowers the damaging effects of too much iron. NIH’s National Institute of Diabetes and Digestive and Kidney Diseases is co-funding this project.

Cardiac Arrest-Induced Acute Brain Injury
HBN-1 Regulated Hypothermia Formulation and Evaluation of Toxicity
Laurence Katz, M.D., associate professor of emergency medicine
University of North Carolina at Chapel Hill

Patients resuscitated from cardiac arrest can suffer from acute brain injury. Lowering a patient’s body temperature into therapeutic-induced hypothermia can improve survival with good neurological outcomes in more than half of patients who remain in a coma after cardiac arrest. This project is designed to develop HBN-1 as an intravenous treatment that paramedics can give to cardiac arrest patients to induce hypothermia sooner. The NIH Common Fund is funding the pre-clinical studies for this project.

“Although each project is selected for its scientific merit, not all projects will lead to treatments because the pre-clinical phase of drug development is fraught with failures related to issues such as adverse side effects,” said John McKew, Ph.D., acting director of NCATS’ Division of Pre-clinical Innovation and chief of the Therapeutics Development Branch. “Still, the support that BrIDGs provides gives each project a fighting chance.”

Source: NIH

Tags: NIHRadiation

Related Posts

DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
How Are Bivalent COVID Vaccines Stacking Up Against Omicron?
Infectious Diseases

How Are Bivalent COVID Vaccines Stacking Up Against Omicron?

January 12, 2023
NISTCHO: New Living Reference Material for Producing Monoclonal Antibodies
Medical Countermeasures

NISTCHO: New Living Reference Material for Producing Monoclonal Antibodies

January 12, 2023
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC