Friday, March 24, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

Small RNAs Coordinate E. coli Bacterial Attack on Epithelial Cells

by Global Biodefense Staff
January 29, 2014

Two small RNAs (sRNAs) working in concert enable the deadly Escherichia coli (EHEC) 0157:H7 to attach to and initiate infection in epithelial cells that line the digestive tract, according to a study recently published in mBio, the online open-access journal of the American Society for Microbiology.

Gram-negative bacteria such as EHEC enter their prey and deploy syringe-like weapons called type III secretion systems (T3SS) that inject proteins into the epithelial cells to promote reorganization of the the cytoskeleton into pedestals that act as docking stations for the bacteria to adhere to the cells.

Both pedestal and T3SS formation demand rapid activation and precise coordination of a large number of bacterial genes co-opted from a pathogenicity island called the locus of enterocytes effacement (LEE) which Charley Gruber, Vanessa Sperandio and their colleagues at the University of Texas Southwestern Medical School in Dallas recently discovered is orchestrated by two sRNAs known as GlmY and GlmZ.

“Our data reveal two previously unknown mechanisms of actions for these sRNAs,” Sperandio says. “Working together GlmY and GlmZ cleave the transcript between espJ and espFu genes enabling translation of EspFu, a protein important for efficient mammalian-cell invasion, and also destabilize the LEE 4 and 5 transcripts thus fine tuning LEE gene expression.”

“Destabilization of LEE is especially important for two reasons ¾first, it permits the differential expression of various genes encoded within the same cluster and second, it ensures that the bacteria are forming optimal pedestal levels on epithelial cells during infection,” according to Sperandio. Thus, these researchers propose that these sRNAs are responsible for the dynamic rewiring of the bacterial complex machineries that enable infection.

“This is a very important contribution to the field particularly because it shows that things are more complicated than they initially appeared,” comments Petr G. Leiman at École Polytechnique Fédérale de Lausanne in Switzerland. “Studies involving sRNA are tricky and require many controls which this paper appears to present in full, thus making the Sperandio team’s work very significant.”

“The horizontal acquisitions of pathogenicity islands [such as LEE] with their added virulence genes enable bacteria to exploit additional niches and new hosts,” explains Sperandio. “Our results suggest that the interplay between ancient and recent evolutionary acquisitions shaped the EHEC we’re dealing with today,” Gruber adds. However, the evolution is ongoing and as the Red Queen in Alice in Wonderland so famously said, we have to race ahead just to keep up.

Read the study at mBio: Posttranscriptional Control of Microbe-Induced Rearrangement of Host Cell Actin.

Tags: E. coli

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
NIH Grant Awarded to Study Evolution of Lyme Disease Bacteria in Deer Ticks
Pathogens

NIH Grant Awarded to Study Evolution of Lyme Disease Bacteria in Deer Ticks

December 7, 2022
Bat Virus Receptor Studies Vital to Predict Spillover Risk
Pathogens

Bat Virus Receptor Studies Vital to Predict Spillover Risk

December 7, 2022
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy