Saturday, February 4, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Antimicrobial Resistance

E-Cigarettes May Boost Virulence of MRSA

by Global Biodefense Staff
May 19, 2014
MRSA Bacteria Surrounded by Cellular Debris

MRSA Bacteria Surrounded by Cellular Debris. Credit: NIAID

Despite being touted by their manufacturers as a healthy alternative to cigarettes, e-cigarettes appear in a laboratory study to increase the virulence of drug-resistant and potentially life-threatening bacteria, while decreasing the ability of human cells to kill these bacteria.

Researchers at the VA San Diego Healthcare System (VASDHS) and the University of California, San Diego (UCSD), tested the effects of e-cigarette vapor on live methicillin-resistant Staphylococcus aureus (MRSA) and human epithelial cells. MRSA commonly colonizes the epithelium of the nasopharynx, where the bacteria and epithelial cells are exposed constantly to inhaled substances such as e-cigarette vapor and cigarette smoke.

“The virulence of MRSA is increased by e-cigarette vapor,” said lead investigator Laura E. Crotty Alexander, MD, VA researcher and assistant professor of medicine in pulmonary and critical care at UCSD. Exposure to e-cigarette vapor increased the virulence of the bacteria, helping MRSA escape killing by antimicrobial peptides and macrophages. However, she added, the vapor did not make the bacteria as aggressive as cigarette smoke exposure did in parallel studies her group conducted.

To conduct the e-cigarette vapor experiment, the researchers grew MRSA (USA 300 strain) in culture with vapor concentrations similar to inhalers on the market. They tested first for biochemical changes in the culture known to promote pathogen virulence and then introduced epithelial cell- and alveolar macrophage-killing assays.

The study was presented at the 2014 American Thoracic Society International Conference.

Alterations in Biofilm Formation

The researchers looked at five factors that contribute to MRSA virulence: growth rate, susceptibility to reactive oxygen species (ROS), surface charge, hydrophobicity and biofilm formation. In particular, e-cigarette vapor led to alterations in surface charge and biofilm formation, which conferred greater resistance to killing by human cells and antibiotics.

Crotty Alexander said that one possible contribution to the increased virulence of MRSA was the rapid change in pH induced by e-cigarette vapor. Exposure changed the pH from 7.4 up to 8.4, making the environment very alkalotic for both bacterial and mammalian cells. This alkalosis stresses the cells, giving them a danger signal, leading to activation of defense mechanisms. The bacteria make their surface more positively charged, to avoid binding by the lethal antimicrobial peptides produced by human innate immune cells. The bacteria also form thicker biofilms, increasing their stickiness and making MRSA less vulnerable to attack.

These changes make MRSA more virulent. However, when MRSA is exposed to regular cigarette smoke, their virulence is even greater. Cigarette smoke induces surface charge changes 10-fold greater than that of e-cigarette exposure, alters hydrophobicity and decreases sensitivity to reactive oxygen species and antimicrobial peptides. In a mouse model of pneumonia, cigarette smoke exposed MRSA had four-times greater survival in the lungs, and killed 30% more mice than control MRSA. E-cigarette vapor exposed MRSA were also more virulent in mice, with a three-fold higher survival.

Unfortunately, while e-cigarette vapor is increasing bacterial virulence, Crotty Alexander has found that the vapor is also decreasing the ability of human epithelial cells to kill pathogens.

“As health care professionals, we are always being asked by patients, “Would this be better for me?” Crotty Alexander said. “In the case of smoking e-cigarettes, I hated not having an answer. While the answer isn’t black and white, our study suggests a response: even if e-cigarettes may not be as bad as tobacco, they still have measurable detrimental effects on health.”

Read the more at ATS Journals: Electronic Cigarette Vapor (ECV) Exposure Decreases Staphylococcus Aureus Susceptibility To Macrophage And Neutrophil Killing.

Tags: AntimicrobialsMRSA

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Virus Discovered in Swiss Ticks
Biosurveillance

New Virus Discovered in Swiss Ticks

December 7, 2022
Load More

Latest News

Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023
Biodefense Headlines – 17 January 2023

Biodefense Headlines – 17 January 2023

January 17, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy