Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    CBRNE

    New Method Discovered To Protect Against Chemical Weapons

    By Global Biodefense StaffMay 28, 2014
    Share
    Facebook LinkedIn Reddit Email

    Researchers at Oregon State University have discovered that some compounds called polyoxoniobates can degrade and decontaminate nerve agents such as the deadly sarin gas, and have other characteristics that may make them ideal for protective suits, masks or other clothing.

    The use of polyoxoniobates for this purpose had never before been demonstrated, scientists said, and the discovery could have important implications for both military and civilian protection.

    The study findings were recently published in the European Journal of Inorganic Chemistry.

    Some other compounds exist that can decontaminate nerve gases, researchers said, but they are organic, unstable, degraded by sunlight and have other characteristics that make them undesirable for protective clothing – or they are inorganic, but cannot be used on fabrics or surfaces.

    By contrast, the polyoxoniobates are inorganic, do not degrade in normal environmental conditions, dissolve easily and it should be able to incorporate them onto surfaces, fabrics and other material.

    “This is a fundamental new understanding of what these compounds can do,” said May Nyman, an associate professor of chemistry in the OSU College of Science. “As stable, inorganic compounds they have an important potential to decontaminate and protect against these deadly nerve gases.”

    As a chemical group, polyoxoniobates have been known of since the mid-1900s, Nyman said, but a detailed investigation of their complex chemistry has revealed this new potential. Besides protection against nerve gas, she said, their chemistry might allow them to function as a catalyst that could absorb carbon dioxide and find use in carbon sequestration at fossil-fuel power plants – but little has been done yet to explore that potential.

    A new method to protect against nerve agents could be significant. These organofluorophosphate compounds can be inhaled or absorbed through the skin, and in military use are considered weapons of mass destruction. They can be lethal even at very small levels of exposure.

    “In continued work we hope to incorporate the protective compounds onto surfaces or fabrics and explore their function,” Nyman said. “They could form the basis for an improved type of gas mask or other protection. We would also need to test the material’s ability to withstand very arid environments, extreme heat or other conditions.”

    A goal will be materials that are durable, high performing and retain a high level of protection against nerve agents such as sarin and soman gas even in harsh environmental conditions, researchers said.

    The OSU research demonstrated the ability of polyoxoniobates to neutralize both actual and simulated nerve agents. Testing against actual nerve agents was done at the Edgewood Chemical Biological Center, a U.S. Army facility designed for that purpose.

    OSU has collaborated on this research with Sandia National Laboratories and the U.S. Army. The work at Edgewood was supported by the Defense Threat Reduction Agency, a unit of the U.S. Department of Defense.

    Image: Compounds have been discovered that offer a new way to detoxify chemical weapons such as sarin gas. Credit: Oregon State University

    CBRN Equipment Chemical Weapons Individual Protection
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleCanada: Implications of Mandatory Flu Vaccinations for Health-Care Workers
    Next Article Oklahoma Confirms First Case and Death of Heartland Virus

    Related Stories

    New Method Improves Quantification of Ricin in Complex Matrices

    September 20, 2023

    SOREX Brings Top CBRNE Units to Dugway Proving Ground

    September 20, 2023

    Biomarkers for Detection of Exposure to Nitrogen Mustards

    September 20, 2023

    Healthcare Workers Express Outrage at Flawed CDC Mask Guidance

    September 18, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 3
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships to Distribute, Dispense, and Administer Medical Countermeasures

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy