Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    Antimicrobial Resistance

    Antimicrobial Strategy Silences Resistant Gene in Pathogens

    By Global Biodefense StaffSeptember 8, 2014
    E. coli bacteria
    E. coli bacteria
    Share
    Facebook LinkedIn Reddit Email

    Researchers from Oregon State University have synthesized a molecule that can silence the gene responsible for severe antibiotic resistance in some bacteria, presenting a viable new strategy for treating resistant infections.

    The focus of this new molecule is NDM-1 (New Delhi metallo-beta-lactamase-1) a gene carried by some bacteria that allows them to produce an enzyme called carbapenemase.

    “NDM-1 confers bacterial resistance to all classes of beta-lactam (penicillin type) antibiotics including carbapenems, powerful antibiotics used when others fail,” says Bruce Geller of Oregon State University and author on the study. “NDM-1 has spread rapidly to many bacterial pathogens, including E. coli, Acinetobacter baumannii and Klebsiella pneumoniae. Many of these pathogens are resistant to multiple antibiotics, which limits treatment options.”

    Molecules known as a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) are synthetic analogs of DNA or RNA that have the ability to silence the expression of specific genes. In this study Geller and his colleagues at Oregon State University and the University of Texas Southwestern have design, synthesized and tested a PPMO that is complimentary to the NDM-1 gene, allowing it to bind specifically to NDM-1 mRNA, essentially silencing the gene.

    “When the NDM-1 PPMO was added to growing cultures of multidrug-resistant E. coli, A. baumannii or K. pneumoniae that express NDM-1, it restored susceptibility to carbapenems at therapeutically relevant concentrations,” says Geller.

    NDM-1 infection was first identified in 2009 in people who resided in or traveled to the India and Pakistan. The first cases in the United States were identified in 2010, and the number of cases is growing. The concern is that these highly resistant bacteria carrying NDM-1 could supplant more antibiotic-sensitive strains.

    “There is a critical need to find new treatments for antibiotic-resistant pathogens and using a gene-silencing approach, such as with a PPMO, could be one viable strategy for new antimicrobial development,” says Geller.

    The research was presented at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), held September 5-9, 2014 in Washington, DC.

    Source: American Society for Microbiology, adapted.

    Antimicrobials E. coli mRNA Synthetic Biology
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleJohnson & Johnson to Accelerate Ebola Vaccine Program
    Next Article Scientists Reveal Cell Secret Potentially Useful For Vaccines

    Related Stories

    EPA Developing AMR Risk Framework for Antibacterial and Antifungal Pesticides

    September 29, 2023

    Jurata Thin Film and CastleVax Awarded Grant to Advance Thermostabilized COVID-19 Booster

    September 20, 2023

    Mount Sinai to Lead Development of Pan-Coronavirus Vaccine Under New Federal Grant

    September 17, 2023

    Case Study: Fatal Avian Influenza Infection in Cat in Poland

    September 15, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 3
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships to Distribute, Dispense, and Administer Medical Countermeasures

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy