Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    Featured News

    New Compound Inhibits Enzyme Crucial to MERS and SARS

    By Global Biodefense StaffSeptember 8, 2014
    MERS Virus Protein Particles
    Share
    Facebook LinkedIn Reddit Email

    Scientists at the University of Illinois, Chicago, have identified a compound that effectively inhibits an enzyme crucial to the viruses that cause Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS).

    The compound appears to have a different method of inhibition in each virus due to slight differences in each virus’ enzyme which means finding other compounds that inhibit both may be difficult.

    The enzyme, known as papain-like protease (PLpro) is considered essential to the coronavirus lifecycle and has been a promising target for years for drugs against SARS coronavirus (SARS-CoV). There are currently 2 groups of known SARS-CoV PLpro inhibitors. The researchers tested four compounds (2 each from 2 groups) for their ability to inhibit MERS-CoV PLpro.

    “The surprising result we got was that four well-validated SARS-CoV PLpro inhibitors were completely ineffective against MERS-CoV PLpro,” says Hyun Lee, an author on the study.

    Lee and her colleagues used x-ray crystallography to examine and compare the structure of these two enzymes and found them to be extremely similar with only minor differences.

    “Even when we solved the crystal structure of MERS-CoV PLpro, we observed that SARS and MERS PLpro share very similar overall structures including catalytic sites. However, after we closely examined the structural difference further, it was clear that there was a significant difference in blocking loop 2 that played a crucial role in SARS-CoV PLpro inhibitor binding,” says principle investigator Michael Johnson.

    Once they discovered that none of the SARS-CoV PLpro inhibitors were effective, the researchers conducted a high-throughput screening of a 25,000-compound library of antimicrobials to see if any could inhibit both PLpro enzymes and got a hit. When they analyzed the mechanism of inhibition of the compound, they discovered it had a different mode of action for each.

    “The important implications of our findings would be inhibitor recognition specificity of MERS-PLpro is different from that of SARS-PLpro even though the overall structures of the whole protein and catalytic sites are very similar,” says Lee. “Basically, we need to discover different types of inhibitors for MERS-CoV PLpro.”

    MERS was first reported in Saudi Arabia in 2012 and has since spread to twenty different countries, resulting in 837 infections with 291 deaths to date. The unusually high case-fatality rate (CFR) of MERS-CoV infections (~35%) is alarming as it far exceeds that of all other known human coronaviruses, including SARS-CoV, which caused a fatal global outbreak in 2003, resulting in 800 deaths (~10% CFR).

    There is still no effective therapeutic available against either MERS-CoV or SARS-CoV. Therefore, developing treatments against both coronaviruses is very important, say Lee & Johnson.

    Source: American Society for Microbiology, adapted.

    Antimicrobials Coronavirus MERS-CoV
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleScientists Reveal Cell Secret Potentially Useful For Vaccines
    Next Article DoD Seeks New Radiological Detection System

    Related Stories

    EPA Developing AMR Risk Framework for Antibacterial and Antifungal Pesticides

    September 29, 2023

    Jurata Thin Film and CastleVax Awarded Grant to Advance Thermostabilized COVID-19 Booster

    September 20, 2023

    Mount Sinai to Lead Development of Pan-Coronavirus Vaccine Under New Federal Grant

    September 17, 2023

    Case Study: Fatal Avian Influenza Infection in Cat in Poland

    September 15, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    Oct 17
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Dispensing and Administration of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.