From Our Partners
Monday, June 27, 2022
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biosecurity

Radiation Drug Effective Administered 24 Hours After Exposure

by Global Biodefense Staff
August 24, 2015
Arktis Radiation Detectors Awarded DARPA Contract

A research team led by The University of Texas Medical Branch at Galveston reports a new breakthrough in countering the deadly effects of radiation exposure. A single injection of a regenerative peptide was shown to significantly increase survival in mice when given 24 hours after nuclear radiation exposure.

The study currently appears in Laboratory Investigation, a journal in the Nature Publishing group.

UTMB lead author Carla Kantara, postdoctoral fellow in biochemistry and molecular biology, said that a single injection of the investigative peptide drug TP508 given 24 hours after a potentially-lethal exposure to radiation appears to significantly increase survival and delay mortality in mice by counteracting damage to the gastrointestinal system.

The threat of a nuclear incident, with the potential to kill or injure thousands of people, has raised global awareness about the need for medical countermeasures that can prevent radiation-induced bodily damage and keep people alive, even if given a day or more after contact with nuclear radiation.

Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe of these effects is the gastrointestinal, or GI, toxicity syndrome that is caused by radiation-induced destruction of the intestinal lining. This type of GI damage decreases the ability of the body to absorb water and causes electrolyte imbalances, bacterial infection, intestinal leakage, sepsis and death.

The GI toxicity syndrome is triggered by radiation-induced damage to crypt cells in the small intestines and colon that must continuously replenish in order for the GI tract to work properly. Crypt cells are especially susceptible to radiation damage and serve as an indicator of whether someone will survive after total body radiation exposure.

“The lack of available treatments that can effectively protect against radiation-induced damage has prompted a search for countermeasures that can minimize the effects of radiation after exposure, accelerate tissue repair in radiation-exposed individuals and increase the chances for survival following a nuclear event,” said Darrell Carney, UTMB adjunct professor in biochemistry and molecular biology and CEO of Chrysalis BioTherapeutics, Inc. “Because radiation-induced damage to the intestines plays such a key role in how well a person recovers from radiation exposure, it’s crucial to develop novel medications capable of preventing GI damage.”

The peptide drug TP508 was developed for use in stimulating repair of skin, bone and muscle tissues. It has previously been shown to begin tissue repair by stimulating proper blood flow, reducing inflammation and reducing cell death. In human clinical trials, the drug has been reported to increase healing of diabetic foot ulcers and wrist fractures with no drug-related adverse events.

“The current results suggest that the peptide may be an effective emergency nuclear countermeasure that could be delivered within 24 hours after exposure to increase survival and delay mortality, giving victims time to reach facilities for advanced medical treatment,” Kantara said.

Chrysalis BioTherapeutics, Inc. has licensed worldwide exclusive rights to TP508 for treatment directed towards radiation induced damage from The University of Texas Medical Branch at Galveston.

The research was supported by the National Institutes of Health and a UTMB Jeane B. Kempner Scholarship.

Read more: Novel regenerative peptide TP508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity.

From Our Partners
Tags: Radiation

Related Posts

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control
Medical Countermeasures

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

June 21, 2022
Biodefense Industry News
Industry News

Tonix Pharmaceuticals Opens Advanced Development Center for Vaccine Programs

June 20, 2022
Dual Use Research of Concern: NIH to Host Stakeholder Engagement Meeting on Oversight Policies
Biosecurity

Dual Use Research of Concern: NIH to Host Stakeholder Engagement Meeting on Oversight Policies

June 14, 2022
Monkeypox Cases Prompt Additional Contracts for Bavarian Nordic Vaccine
Medical Countermeasures

Monkeypox Cases Prompt Additional Contracts for Bavarian Nordic Vaccine

May 30, 2022
Load More

Latest News

Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps

Poliovirus Detected in London Sewage: Response Measures Emphasize Wastewater Surveillance and Vaccination Gaps

June 22, 2022
Monkeypox Diagnostics: CDC Authorizes Five Commercial Lab Companies

Monkeypox Diagnostics: CDC Authorizes Five Commercial Lab Companies

June 22, 2022
UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

UK Health Security Agency Widens Monkeypox Vaccine Umbrella for Outbreak Control

June 21, 2022
Influenza Research

New Way to Identify Influenza A Virus Lights Up When Specific Virus Targets are Present

June 20, 2022

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC