Monday, March 27, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biosecurity

Harvard: Using Mobile Phone Records to Predict Dengue Epidemics

by Global Biodefense Staff
September 7, 2015

Dengue Fever Risk Area MapA new study finds that mobile phone records can be used to predict the geographical spread and timing of dengue epidemics.

Utilizing the largest data set of mobile phone records ever analyzed to estimate human mobility, researchers from the Harvard T.H. Chan School of Public Health developed an innovative model that can predict epidemics and provide critical early warning to policy makers.

Dengue is the most rapidly spreading mosquito-borne disease worldwide. Infection can lead to sudden high fever, bleeding, and shock, and causes significant mortality.

The researchers analyzed data from a large dengue outbreak in Pakistan in 2013 and compared it to a transmission model they developed based on climate information and mobility data gleaned from call records. Data from nearly 40 million mobile phone subscribers was processed in collaboration with Telenor Research and Telenor Pakistan, with the call records being aggregated and anonymized before analysis.

The results showed that the in-country mobility patterns, revealed by the call records, could be used to accurately predict the geographical spread and timing of outbreaks in locations of recent epidemics and emerging trouble spots.

“Accurate predictive models identifying changing vulnerability to dengue outbreaks are necessary for epidemic preparedness and containment of the virus,” said Caroline Buckee, assistant professor of epidemiology, and the study’s senior author. “Because mobile phone data are continuously being collected, they could be used to help national control programs plan in near real time.”

Tags: DengueMosquito-Borne

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Pursues Advanced Threat-Detection for Crop Defense
Biosecurity

DARPA Pursues Advanced Threat-Detection for Crop Defense

January 3, 2023
New Virus Discovered in Swiss Ticks
Biosurveillance

New Virus Discovered in Swiss Ticks

December 7, 2022
NIH Grant Awarded to Study Evolution of Lyme Disease Bacteria in Deer Ticks
Pathogens

NIH Grant Awarded to Study Evolution of Lyme Disease Bacteria in Deer Ticks

December 7, 2022
Load More

Latest News

Biodefense Headlines – 26 March 2023

March 26, 2023
Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC