Thursday, March 16, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

Penn State’s Acoustic Tweezers for Low-Cost Diagnostics

by Global Biodefense Staff
December 4, 2015
Penn Disposable Microfluidic Laboratory

Conception of a reusable acoustic tweezers device (bottom) with a disposable microfluidic laboratory for cell manipulation and disease diagnosis. Credit: Huang Lab / Penn State

Researchers at Penn State have recently filed a patent to develop a reusable microfluidic device for sorting and manipulating cells and other micro/nano meter scale objects.

Based on gentle acoustic vibrations, the device, called acoustic tweezers, is the work of professor of engineering science and mechanics, Tony Huang and his students.

The goal is to make biomedical diagnosis of diseases cheaper and more convenient in regions where medical facilities are sparse or cost is prohibitive.

“We believe our acoustic tweezers have tremendous potential, especially in diagnostics, with some applications also in therapeutics. Our current device works well, but to be used in diagnostics, the whole device has to be disposed of after one use,” Huang said. “We have now found a way to separate the fluid-containing part of the device from the much more expensive ultrasound-producing piezoelectric substrate. This makes disposable acoustic tweezers possible.”

Huang believes that the disposable plastic portion of the device can be manufactured for as little as 25 cents per unit. Even with the addition of electronics for diagnosis, which could be easily added off the shelf, he foresees a manufacturing cost of a few dollars for the complete permanent system, which could then be used over and over with the simple replacement of the plastic microfluidic channels.

“We want to push this toward a commercial product, something that can help people and benefit society,” Huang said.

In the prior device, the microfluidic channel was permanently bound to the substrate and the ultrasound would be radiated directly into the fluid. In the new device, there is an intervening layer, but the ultrasound force is strong enough to manipulate the cells and to pattern them. This patterning of cells is especially important in studying cell-to-cell communication in biology labs or for drug screening.

“In drug screening, you want to examine how cells respond to drugs. With our acoustic tweezers, we can create a high throughput of single cells and see how they respond to drugs. Or, we create all types of cell assemblies and see how they respond to drugs, much more like how it would work inside the body,” said Feng Guo, a Ph.D. student in Huang’s group and lead author of the paper “Reusable acoustic tweezers for disposable devices.”

In addition to its use in diagnosing diseases such as HIV and tuberculosis, both of which are endemic in resource-poor regions of the world, the device should find widespread use in hospitals, clinics, biology labs and the home due to its low cost and ease of use.

Their work is the cover article for the current issue of the journal Lab on a Chip.

Tags: POC Diagnostics

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC