Friday, March 17, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Featured News

USAMRIID Study: Filovirus Survivor Protective Antibodies

by Global Biodefense Staff
July 14, 2016
Ebola Virus POC Diagnostics

New research from the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) suggests that antibodies to filoviruses from individuals who have survived these diseases may offer protection–not only against the particular filovirus that infected an individual, but against other filoviruses, as well.

The research was recently published in Clinical and Vaccine Immunology, a journal of the American Society for Microbiology.

In their study, the researchers tested serum antibodies collected from survivors between one and 14 years after three separate and well-documented outbreaks, said corresponding author Mohan Natesan, Ph.D., Investigator, Molecular and Translational Sciences, USAMRIID. They found that antibodies from the various filoviruses present substantial cross-reactivity–that is, antibodies from one filovirus reacted to other filoviruses–for up to 14 years after primary infection.

“Although there are still no clear correlates of immunity, our results suggest that antibody responses to disease outbreaks extend beyond the primary virus, and may impart at least partial immunity to other filoviral infections,” said Natesan.

“The broad protein-level and virus-level cross-reactivities that we observed for antibodies from humans years after their recovery from infections caused by Ebola and Marburg viruses indicate that these serological immune responses are long lived and extend beyond the original filovirus exposure,” the investigators write.

“In order to examine antibody specificity, we used microarrays containing recombinant antigens from all six species of filoviruses,” said Natesan. The microarrays are systems containing tiny fragments of filovirus printed onto miniaturized microscope slides. Each fragment is exposed to antibodies obtained from the survivors of filovirus infection. The strength of each antibody/antigen interaction is determined from the strength of its signal in microarray.

The average fatality rate for Ebola is 50 percent. (Ebola is fairly representative of the other filoviruses.) The disease is highly infectious–via mucus membranes, broken skin, bodily secretions and fluids, as well as through contact with surfaces such as bedding and clothing that are contaminated with these fluids, according to the World Health Organization.

Contact with the dead body of a victim can also spread the disease. Healthcare workers have frequently become infected while treating victims when protection protocols were not strictly observed. Patients are infectious as long as virus remains in their bodies.

Tags: EbolaUSAMRIID

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
How Are Bivalent COVID Vaccines Stacking Up Against Omicron?
Infectious Diseases

How Are Bivalent COVID Vaccines Stacking Up Against Omicron?

January 12, 2023
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC