Friday, March 24, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Pathogens

New Biomarkers Associated with Protection by RTS,S Malaria Vaccine

by Global Biodefense Staff
October 30, 2018
RTS,S Vaccine Clinical Trial - Southern Mozambique

Credit: ISGlobal

The RTS,S vaccine (Mosquirix), approved by the European Medical Agency, has shown partial effectiveness – 31% in 6 to 12 weeks-old infants, and 56% in children aged 5 to 17 months. ISGlobal researcher, Carlota Dobaño, and her group, have been working over the past few years to understand the reasons for this variability and identify vaccine protection correlates.

In a recently published study, an international team led by Dobaño investigated not only the levels but also the type of antibodies induced by the vaccine, thanks to a quantitative assay developed by her group.

The results, published in BMC Medicine, shed new light on the mechanisms by which RTS,S confers protection and provide the basis for developing more efficacious vaccines.

In particular, they measured levels of antibody subclasses against different fragments of the CSP parasite protein and the Hepatitis B virus surface antigen (HBsAg), the two proteins comprised in RTS,S. They analysed serum and plasma from almost 200 infants and children from Kintampo, Ghana (an area with high malaria transmission) and Manhiça, Mozambique (low malaria transmission), vaccinated during the phase 3 clinical trial for RTS,S/AS01E.

The results confirm that the vaccine induces significant levels of IgG antibodies against both proteins (CSP and HBsAg), which are higher in children than in infants. However, not all subclasses of CSP antibodies seem to protect: IgG1 and IgG3 antibodies were associated with protection, while IgG2 and IgG4 were associated with higher disease risk.

“The balance between the different subclasses seems to be more important than the total IgG levels,” explains lead author Itziar Ubillos. “This could be because IgG1 and IgG3 antibodies have the capacity to stick to the parasite and give an ‘eat-me’ signal to cells of the immune system,” she adds.

The results also indicate that children with higher pre-vaccine levels of CSP antibodies were less protected against disease, post-vaccination. “This means that the vaccine will exert a larger benefit to infants who have not been exposed to the parasite in utero or during the first weeks of life,” explains Dobaño. “This study, fruit of many years of work and many collaborators, identifies new correlates of vaccine success and failure in African children and provides a basis for designing more efficacious vaccines,” says the researcher.

Baseline exposure, antibody subclass, and hepatitis B response differentially affect malaria protective immunity following RTS,S/AS01E vaccination in African children
https://doi.org/10.1186/s12916-018-1186-4

Tags: MalariaVaccines

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Virus Discovered in Swiss Ticks
Biosurveillance

New Virus Discovered in Swiss Ticks

December 7, 2022
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC