Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    Featured News

    Multidomain Antibody to Neutralize Flu Virus Through Entire Season

    By Global Biodefense StaffNovember 6, 2018
    Influenza Transmission Spikes During Social Gatherings
    Credit: Shutterstock
    Share
    Facebook LinkedIn Reddit Email

    Scientists have discovered that tethering four antibodies together may be an effective strategy for neutralizing all types of influenza virus known to infect humans.

    The research, published recently in Science, suggests this strategy could lead to influenza prevention tools with the strength and potency to last throughout the flu season, even as the virus mutates rapidly.

    “We don’t have a vaccine yet that protects against all of the two main types of influenza (A and B). The key to this study is the engineering of a multidomain antibody that is cross-neutralizing to influenza A and B,” says Ian Wilson, DPhil, Hansen Professor of Structural Biology at Scripps Research, and Chair of the Department of Integrative Structural and Computational Biology.

    Tethering together antibodies is not a new concept, but this is the first time four antibodies have been tethered together and tried against influenza.

    The antibodies in this study came from llamas that had been challenged with a vaccine containing three types of the virus, as well as a key protein from two different strains of influenza. Llamas are important in immunology research because they produce unique antibodies that are smaller and simpler than those found in humans and fit into smaller and more recessed binding sites on the viral surface.

    “In this case, the llama antibodies could be easily linked together to create multi-specific antibodies binding to different sites on different targets,” Ian Wilson says. “This multi-specificity is the key to having broad coverage of highly variable pathogens like influenza.”

    The scientists tethered together two llama antibodies against influenza A and two against influenza B to create a “multidomain” antibody. With their Scripps Research colleagues, Ian Wilson and Professor Andrew Ward, PhD, led the x-ray and electron microscopy structural studies to show exactly where this multidomain antibody was binding to influenza proteins.

    They found that the antibody could target several vulnerable sites on influenza A and B. This means the antibody was cross-reactive and may have the ability to protect against all circulating strains of the virus that affect humans, as well as new subtypes that could mutate to cause pandemics.

    “The question then was how you might deliver those antibodies,” says Ian Wilson.

    For this, the scientists turned to an approach traditionally used in gene therapy, not vaccine design. They used a viral vector that could deliver a specially engineered gene to instruct cells to start expressing a producing protein comprised of fragments from all four llama antibodies.

    The viral vector, called adenovirus-associated virus, was then administered into the nostrils of mice via a nasal spray. The goal was to get them to produce these protective antibodies in their upper respiratory tract, the tissues most vulnerable to influenza.

    Collaborators at the University of Pennsylvania, led by James Wilson, MD, PhD, and Maria Limberis, PhD, found that this approach could offer protection against multiple strains of influenza—and it worked rapidly, within a few days in most of the mice.

    While the study suggests that a multidomain antibody approach may hold potential as a strategy for the prevention of influenza A and B, this research is preclinical and further study is required to determine whether such a medicine can successfully be developed.

    The study, “Universal protection against influenza infection by a multi-domain antibody to influenza hemagglutinin,” also includes authors from Janssen Research & Development LLC., Janssen Vaccines & Prevention B.V., Quantitative Sciences, The University of Hong Kong and the University of Pennsylvania.

    Support and Partners

    The study was supported by the National Institutes of Health (grants R56,AI117675 and R56 AI127371), by a grant from Janssen, and in part by the Defense Advanced Research Projects Agency, Department of Defense (grant 64047-LS-DRP.02) and the Theme-based Research Scheme, Research Grants Council of the Hong Kong (ref. T11-705/14N).

    X-ray diffraction data were collected at the Advanced Photon Source (APS) beamlines 23ID-B, 23ID-D, and 17-ID and at the Stanford Synchrotron Radiation Lightsource (SSRL) BL12-2. Use of the APS was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences, Office of Science, under contract DE-AC02-06CH11357. GM/CA CAT is funded in whole or in part with federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104).

    Use of the SSRL, SLAC National Accelerator Laboratory, is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the NIGMS (including P41GM103393).

    Source: Scripps Research

    Influenza Universal Flu Vaccine
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleNext Global Malaria Threat Will Happen in Malaysia
    Next Article Antibiotic Resistance Could Take Us Back To the ‘Dark Ages’

    Related Stories

    New Method Improves Quantification of Ricin in Complex Matrices

    September 20, 2023

    Jurata Thin Film and CastleVax Awarded Grant to Advance Thermostabilized COVID-19 Booster

    September 20, 2023

    Healthcare Workers Express Outrage at Flawed CDC Mask Guidance

    September 18, 2023

    Mount Sinai to Lead Development of Pan-Coronavirus Vaccine Under New Federal Grant

    September 17, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 3
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships to Distribute, Dispense, and Administer Medical Countermeasures

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy