Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    Biodetection

    New DNA Test Will Improve Tracking of Salmonella Food-Poisoning Outbreaks

    By Global Biodefense StaffApril 28, 2020
    Salmonella are gram-negative, rod-shaped, facultative anerobic bacteria. Zhang et al developed sensitive and specific assays to detect different serotypes of Salmonella, paving the way for rapid serotyping directly from specimens. Credit: NIAID
    Share
    Facebook LinkedIn Reddit Email

    Researchers report the development of a sensitive and specific assay to detect different serotypes of Salmonella, paving the way for rapid serotyping directly from specimens. This improvement upon current testing methods can play a critical role in quickly tracing the origin of the infection. The report appears in The Journal of Molecular Diagnostics, published by Elsevier.

    Recent data from the Centers for Disease Control and Prevention (CDC) indicate that food poisoning caused by Salmonella bacteria leads to 1.35 million infections, 26,500 hospitalizations, and 420 deaths in the United States per year. During an outbreak, the speed and simplicity of a test to detect specific types of bacteria are important for public health investigators to track down the source.

    “Salmonella in a clinical or food sample may be present in very small amounts and thus requires very sensitive methods to detect them. Multiple cross-displacement amplification (MCDA) is a method that can detect very small amounts of DNA rapidly and is also performed at a single constant temperature, in contrast to the cycling of temperatures required in other methods such as PCR. This makes it a good fit for a simple, rapid, and sensitive bacterial detection test. Although an MCDA test for any Salmonella already exists, it does not distinguish between different serotypes,” explained Professor Ruiting Lan, PhD, of the School of Biotechnology and Biomolecular Sciences at the University of New South Wales, Sydney, NSW, Australia.

    The investigators developed an MCDA assay for each of the seven serovar (subtype)-specific targets of Salmonella. All of these assays accurately detect as few as 10 copies of DNA and can produce results in approximately eight minutes. Importantly, these assays do not require specialized detection equipment, simplifying any future application in clinical or industrial settings. By combining these seven serovar-specific assays with the existing species assay, Salmonella detection can be simplified and accelerated.

    “The assays developed in this study are unique because the gene markers used were selected based on analyzing thousands of genomes. Thus, these markers future proof Salmonella serotyping in the era of culture-independent diagnostic testing,” commented Professor Lan.

    Traditional methods to distinguish Salmonella serotypes involve growing the bacteria from samples and then testing them to assign them to a serovar. The MCDA test is faster because it does not require first growing the bacteria in culture. Rather, it can detect very small amounts of Salmonella DNA.

    Although there are hundreds of Salmonella serovars, the authors chose the five most commonly occurring in Australia, which cause more than 85 percent of Salmonella infections in that country. However, at least two of these serovars are also the top Salmonella serovars throughout the world, therefore the researchers believe the results are applicable to other geographic regions.

    Salmonella bacteria typically live in animal and human intestines and are shed through feces. Humans may become infected by ingesting contaminated water or food such as raw or undercooked meat, poultry, eggs, or egg products. Possible signs and symptoms of Salmonella poisoning include nausea, vomiting, abdominal cramps, diarrhea, fever, and headache.

    Editor Pick Food Safety Salmonella
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleCHIKRisk: Mapping the Next Chikungunya Outbreak
    Next Article COVID-19 Study Shows That Men Have Over Double the Death Rate of Women

    Related Stories

    EPA Developing AMR Risk Framework for Antibacterial and Antifungal Pesticides

    September 29, 2023

    Provide Feedback on Federal DURC Biosafety Oversight of Potential Pandemic Pathogens

    September 24, 2023

    Committee to Examine Transmission and Geographic Spread of Chronic Wasting Disease

    September 24, 2023

    New Method Improves Quantification of Ricin in Complex Matrices

    September 20, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 3
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships to Distribute, Dispense, and Administer Medical Countermeasures

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.