Tuesday, March 28, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

Rapid Identification of Ricin in Serum Samples Using LC–MS/MS

by Global Biodefense Staff
January 23, 2021
Rapid Identification of Ricin in Serum Samples Using LC–MS/MS

This image from the CDC depicts castor beans, Ricinus communis, composed of numbers of spiny seed pods, and a freed castor beans scattered about the setting. Castor beans contain the highly toxic poison known as ricin.

The widespread availability of ricin, a protein derived from the seeds of the castor bean plant (Ricinus communis) and its extreme toxicity make it an ideal agent for bioterrorism and self-poisoning.

A rapid, sensitive and reliable method for ricin identification in clinical samples is required for applying appropriate and timely medical intervention. However, this goal is challenging due to the low predicted toxin concentrations in bio-fluids, accompanied by significantly high matrix interferences.

In this study, researchers report the on a sensitive, rapid, antibody-independent assay for the identification of ricin in body fluids using mass spectrometry (MS). The assay involves lectin affinity capturing of ricin by easy-to-use commercial lactose–agarose (LA) beads, following by tryptic digestion and selected marker identification using targeted LC–MS/MS (Multiple Reaction Monitoring) analysis. This enables ricin identification down to 5 ng/mL in serum samples in 2.5 h.

A real-life test of the assay was successfully executed in a challenging clinical scenario, where the toxin was identified in an abdominal fluid sample taken 72 h post self-injection of castor beans extraction in an eventual suicide case.

This method developed for ricin identification in clinical samples has the potential to be applied to the identification of other lectin toxins. Being antibody independent, the assay can be extended to a multiplexed application for identifying the entire RIP II toxins family without skewing the result by a priori selection of target toxins by specific antibodies.

Rapid, Sensitive and Reliable Ricin Identification in Serum Samples Using LC–MS/MS. Toxins, 22 January 2021.

Tags: Editor PickRapid DiagnosticsRicinSelect Agents

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
Load More

Latest News

Biodefense Headlines – 26 March 2023

March 26, 2023
Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC