Thursday, January 26, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Medical Countermeasures

WRAIR, Duke Scientists Find Evidence of Monoclonal Antibody Activity Against Malaria

by Global Biodefense Staff
March 5, 2021
WRAIR, Duke Scientists Find Evidence of Monoclonal Antibody Activity Against Malaria

Scientists at Walter Reed Army Institute of Research, in a collaboration with Duke University, have confirmed that monoclonal antibodies can be an effective tool in the global fight against malaria.

The study, led by Dr. Sheetij Dutta, chief of the Structural Vaccinology Laboratory at WRAIR, showed that mAbs such as CIS43 were most effective in a culture-based assay that measured malaria parasites’ ability to infect a human liver cell, while another mAb 317 showed the best activity in a mouse infection model.

The “difference in assay outcomes for mAbs could reflect distinct sites on the circumsporozoite protein that can be exploited for developing improved vaccines,” Dutta noted.

Despite decades of malaria vaccine research, current vaccine candidates have shown low efficacy in field trials conducted in several countries in Africa. Many researchers from around the world have now focused their attention on using monoclonal antibodies against the circumsporozoite protein of the parasite.

Unlike vaccines, where protective responses can take multiple doses and many months to develop, mAbs may offer months of protection immediately after administration of a single injectable dose and can be developed at a fraction of the cost of developing new drugs.

Army Col. Jason Regules, MD, director of WRAIR’s Malaria Biologics Branch, added, “this was a critical study and will help to guide our future work in isolating monoclonal antibodies of unique specificity and activity from ongoing clinical trials of the FMP013 and FMP014 malaria vaccines that were developed at the WRAIR, in collaboration with our malaria research partners.”

Malaria, spread by infectious mosquitoes, causes over 200 million cases and kills hundreds of thousands of people every year, with a disproportionate allocation of morbidity and mortality distributed amongst children and pregnant women living in the most impoverished and resource-limited areas of the world. Malaria-naïve travelers to malaria-endemic regions must employ anti-malarial countermeasures or also be at risk of grave illness or death. Anti-malarial drug effectiveness, a cornerstone for prevention and treatment, can be sub-optimal due to ever-emerging resistance, the need for frequent administration, and difficulties with compliance.

In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Scientific Reports, 5 March 2021.

Tags: Editor PickMalariaTherapeutic AntibodiesWRAIR

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
How Are Bivalent COVID Vaccines Stacking Up Against Omicron?
Infectious Diseases

How Are Bivalent COVID Vaccines Stacking Up Against Omicron?

January 12, 2023
Load More

Latest News

Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023
Biodefense Headlines – 17 January 2023

Biodefense Headlines – 17 January 2023

January 17, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy