Thursday, March 16, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Research

A New Era in Modern Analytical Chemistry with Nano-FTIR

by Global Biodefense Staff
August 1, 2012

Researchers from the nanoscience research center NanoGUNE (San Sebastian, Spain), the University of Munich (LMU, Germany) and Neaspec GmbH (Martinsried, Germany) have developed a new method for fast and reliable chemical identification of virtually any infrared-active material on the nanometer scale.

An ultimate goal in modern chemistry and materials science is the non-invasive chemical mapping of materials with nanometer scale resolution. Although a variety of high-resolution imaging techniques currently exist, such as electron microscopy or scanning probe microscopy, their chemical sensitivity cannot meet the demands of modern chemical nano-analytics. And despite the high chemical sensitivity offered by optical spectroscopy, its resolution is limited by diffraction to about half the wavelength, preventing nano-scale-resolved chemical mapping.

The team developed an optical technique termed nano-FTIR, that combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser, and analyzing the backscattered light with a specially designed Fourier Transform spectrometer, the researchers could demonstrate local infrared spectroscopy with a spatial resolution of less than 20 nm.

Notably, the nano-FTIR spectra match extremely well with conventional FTIR spectra. The spatial resolution is increased by more than a factor of 300 compared to conventional infrared spectroscopy.

Rainer Hillenbrand, group leader from nanoGUNE, concludes: “The high sensitivity to chemical composition combined with ultra-high resolution makes nano-FTIR a unique tool for research, development and quality control in polymer chemistry, biomedicine and pharmaceutical industry.”

The biodefense and diagnostics world increasingly look to microelectromechanical system (MEMS) and nanotechnology for development of biodetection systems and advanced optical biosensing technology. The nano-scale chemical mapping capabilities demonstrated with Nano-FTIR may help create new materials and devices that can be applied to the fields of medicine, electronics and biomaterials.

Tags: Chemical DetectionNanotech

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Virus Discovered in Swiss Ticks
Biosurveillance

New Virus Discovered in Swiss Ticks

December 7, 2022
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC