Friday, March 17, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Medical Countermeasures

Study Reveals Potential Treatments for Ebola and Other Deadly Viruses

by Global Biodefense Staff
March 26, 2013

Broad-Spectrum Antiviral ProbesIllnesses caused by many of the world’s most deadly viruses cannot be effectively treated with existing drugs or vaccines. A recent study has revealed several compounds that can inhibit multiple viruses, such as highly lethal Ebola virus, as well as pathogens responsible for rabies, mumps, and measles, opening up new therapeutic avenues for combating highly pathogenic viruses.

“The medical field currently does not have ideal antiviral therapies, often no therapeutics at all, and the development of broad-spectrum antivirals is a great way to provide treatment in the future,” says study author Claire Marie Filone of Boston University School of Medicine. “Toward that end, we have identified a drug that targets multiple viruses- and may be developed into an antiviral treatment for known and emerging viruses.”

Many viruses that cause human diseases are nonsegmented, negative-strand (NNS) RNA viruses, which include the highly lethal Ebola virus and other pathogens mentioned above. In contrast to the many antibiotics that work against a wide range of bacteria, there are currently no highly effective or safe broad-spectrum drug treatments for viral diseases.

To address this need, John Connor and John Snyder of Boston University and their team screened thousands of diverse compounds for small molecules that showed strong antiviral activity against multiple NNS viruses. They identified several molecules that inhibited infection in cells exposed to either Ebola or another NNS virus called vesicular stomatitis virus. These molecules, which are related to a class of plant-derived compounds called indoline alkaloids, share a common chemical structure that can be modified to enhance antiviral activity.

The most potent of these compounds turned off NNS viral genes by blocking transcription. “Because our antiviral targets such a critical step in virus replication, we may be able to develop it into a therapeutic that could be used against many different types of viral infections,” Filone says.

Read more at Chemistry & Biology: Identification of a broad-spectrum inhibitor of virus RNA synthesis: validation of a prototype virus-based approach.

Source: Adapted from Cell Press 

Image: There is no effective small-molecule therapy for most viruses, including highly pathogenic viruses such as Ebola, which is associated with mortality rates of up to 90 percent following infection. Filone et al, describe compounds that inhibit the replication of genetically diverse viruses, including Ebola. These compounds can limit virus replication (illustrated as green molecules “blocking” spread of orange Ebola virus virions from an infected cell). These molecules represent probes of a central virus function as well as a lead compound for the development of effective broad-spectrum antivirals. Credit: Image created by Claire Marie Filone and John Connor, Ebola virus micrograph by Chris Reed at USAMRIID.

Tags: AntiviralsEbola

Related Posts

DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
How Are Bivalent COVID Vaccines Stacking Up Against Omicron?
Infectious Diseases

How Are Bivalent COVID Vaccines Stacking Up Against Omicron?

January 12, 2023
NISTCHO: New Living Reference Material for Producing Monoclonal Antibodies
Medical Countermeasures

NISTCHO: New Living Reference Material for Producing Monoclonal Antibodies

January 12, 2023
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are okay with it.OkPrivacy policy