Friday, March 17, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Biodetection

Molecular Nano-Spies Make Light Work of Disease Detection

by Global Biodefense Staff
January 20, 2014

A world of cloak-and-dagger pharmaceuticals has come a step closer with the development of stealth compounds programmed to spring into action when they receive the signal.

Researchers at the University of Nottingham’s School of Pharmacy have designed and tested large molecular complexes that will reveal their true identity only when they’ve reached their intended target, like disguised saboteurs working deep behind enemy lines.

The compounds have been developed as part of a five-year program funded by the Engineering and Physical Sciences Research Council (EPSRC) called “Bar-Coded Materials”.

The cloak each spherical complex wears is perhaps more a plastic mac: a sheath of biocompatible polymer that encapsulates and shrouds biologically active material inside, preventing any biological interaction so long as the shield remains in place.

The smart aspect is in the DNA-based zips that hold the coat in place until triggered to undo. Because any DNA code (or “molecular cipher”) can be chosen, the release mechanism can be bar-coded so that it is triggered by a specific biomarker – for example a message from a disease gene.

What is then exposed – an active pharmaceutical compound, a molecular tag to attach to diseased tissue, or a molecular beacon to signal activation – depends on what function is needed. 

Professor Cameron Alexander, who leads the project, says: “These types of switchable nanoparticles could be extremely versatile. As well as initial detection of a medical condition, they could be used to monitor the progress of diseases and courses of treatment, or adapted to deliver potent drugs at particular locations in a patient’s body. It might even become possible to use mobile phones rather than medical scanners to detect programmed responses from later generations of the devices.” 

In their initial trials, the team has proved the concept works in the test tube – the switchable molecular constructs do respond as expected when presented with the right molecular signals. The group is now working hard to push their idea forwards. 

An early application might be in dipstick technology – testing for specific infections in a blood or spit sample, for example. But because the polymer coating (called polyethylene glycol) is biocompatible, the researchers are hopeful that in the long run “self-authenticating medicines” based on the approach could be injected into patients, to seek out diseased tissue, and report their success.

“The key to this breakthrough has been the five-year EPSRC Leadership Fellowship awarded to me back in 2009”, Professor Alexander comments. “This has provided the stability of funding to recruit and retain an outstanding team, who have been integral to realising the ideas put forward in the Fellowship. It has also given us the freedom to explore a whole range of new concepts, as well as the time needed to test our ideas to bring this and other breakthroughs within reach”.

The team’s new results have been published in Nanoscale: Programmed assembly of polymer–DNA conjugate nanoparticles with optical readout and sequence-specific activation of biorecognition

Source: Engineering and Physical Sciences Research Council

Tags: BiomarkersNanotech

Related Posts

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
The device appears smaller than a playing card, transparent, with visible channels branching off.
Medical Countermeasures

How Organ-on-a-chip Models Could Grease the Drug Development Pipeline

January 10, 2023
New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
Load More

Latest News

Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC