Sunday, January 29, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home CBRNE

Clothing Infused with Nanotubes to Protect Against Chemical Weapons

by Global Biodefense Staff
May 12, 2014

Scientists at the National Institute of Standards and Technology (NIST) have demonstrated a way to engineer carbon nanotubes to dismantle the molecules of organophosphate nerve agents. In principle, the nanotubes could be woven into clothing that destroys the chemicals on contact before they reach the skin.

The team’s experiments show that nanotubes can be combined with a copper-based catalyst able to break apart a key chemical bond in organophosphates, such as Sarin. A small amount of catalyst can break this bond in a large number of molecules, potentially rendering a nerve agent far less harmful.

Nanotubes for Chemical Weapons Protective Clothing
Single-walled carbon nanotubes, represented by the gray cylinders, can be combined with a catalyst (purple ribbons) that is capable of breaking down Sarin and related toxins into less dangerous components. The idea might one day be used to create clothing for increased protection against nerve agents. Credit: NIST

While organophosphates are harmful if inhaled, they also are dangerous if absorbed through the skin, and can be even be re-released from clothing if not thoroughly decontaminated. Many organophosphates are classified as weapons of mass destruction.

To protect themselves during research, the team did not work with actual nerve agents, but instead used a “mimic molecule” that contains a chemical bond identical to the one found in organophosphates. Breaking this bond splits the molecule into pieces that are far less dangerous.

The team developed a way to attach the catalyst molecule to the nanotubes and then tested the effectiveness of the tube-catalyst complex to break the bonds. To perform the test, the complex was deposited onto a small sheet of paper and put into a solution containing the mimic molecule. For comparison, the catalyst without nanotubes was tested simultaneously in a different solution. Then it was a simple matter of stirring and watching chemistry in action.

“The solution was initially transparent, almost like water,” says the team’s John Heddleston, “but as soon as we added the paper, the solution started to turn yellow as the breakdown product accumulated. Measuring this color change over time told us the amount and rate of catalysis. We began to see a noticeable difference within an hour, and the longer we left it, the more yellow it became.” The catalyst-nanotube complex far outperformed the catalyst alone.

Principal investigator Angela Hight Walker says that several questions will need to be addressed before catalytic nanotubes start showing up in clothing, such as whether it is better to add the catalyst to the nanotubes before or after they are woven into the fabric.

“We’d also like to find ways to make the catalytic reaction go faster, which is always better,” Hight Walker says. “But our research group has been focusing on the fundamental science of nanoparticles for years, so we are in a good position to answer these questions.”

Read more at Nano Research: Functionalized, carbon nanotube material for the catalytic degradation of organophosphate nerve agents.

Source: NIST, adapted

Image: Single-walled carbon nanotubes, represented by the gray cylinders, can be combined with a catalyst (purple ribbons) that is capable of breaking down Sarin and related toxins into less dangerous components. The idea might one day be used to create clothing for increased protection against nerve agents.

Tags: Individual ProtectionNanotech

Related Posts

two soldiers are in head-to-toe hazmat suits with respirator masks while tending to a mannikin on a stretcher
CBRNE

Protection from Biothreats: DOD to Modernize Medical Countermeasures Development

January 10, 2023
Killing Anthrax More Quickly with Hot Air Decontamination
CBRNE

Killing Anthrax More Quickly with Hot Air Decontamination

January 4, 2023
New Material Helps Train First Responders on Biothreats
Biodetection

New Material Helps Train First Responders on Biothreats

January 4, 2023
State Department: Reducing Revisionist State Biological and Chemical Weapons Threats
CBRNE

State Department Sanctions Syrian Military Officials for Role in Ghouta Sarin Attack

October 24, 2022
Load More

Latest News

Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
Biodefense Headlines – 24 January 2023

Biodefense Headlines – 24 January 2023

January 24, 2023
Biodefense Headlines – 17 January 2023

Biodefense Headlines – 17 January 2023

January 17, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC