Facebook X (Twitter) Instagram
    Facebook Instagram Threads
    Global BiodefenseGlobal Biodefense
    Subscribe
    • Featured News
    • Funding
    • Directory
    • Jobs
    • Events
    Global BiodefenseGlobal Biodefense
    Biosurveillance

    SIGMA+ Expands Rad-Nuc Sensor Network to Detect Chemical, Biological Threats

    By Global Biodefense StaffFebruary 21, 2018
    CBRN Contracts & Grants
    Share
    Facebook LinkedIn Reddit Email

    Building on SIGMA’s advanced capability to sniff out illicit radioactive and nuclear materials, SIGMA+ program aims to create additional sensors and networks to detect biological, chemical, and explosives threats

    Advanced commercially available technologies—such as additive manufacturing (3-D printing), small-scale chemical reactors for pharmaceuticals, and CRISPR gene-manipulation tools—have opened wide access to scientific exploration and discovery. In the hands of terrorists and rogue nation states, however, these capabilities could be misused to concoct chemical, biological, radiological, nuclear, and high-yield explosive (CBRNE) weapons of mass destruction (WMD) in small quantities and in form factors that are hard to detect.

    To meet this challenge DARPA today announced its SIGMA+ program, an expansion of the existing SIGMA program, which detects radiological and nuclear materials. SIGMA+ seeks to develop new sensors and networks that alert authorities to chemical, biological, and explosives threats as well.

    “The goal of SIGMA+ is to develop and demonstrate a real-time, persistent CBRNE early detection system by leveraging advances in sensing, data fusion, analytics, and social and behavioral modeling to address a spectrum of threats,” said Vincent Tang, SIGMA+ program manager in DARPA’s Defense Sciences Office (DSO). “To achieve this, we’ve pulled together a team of DARPA program managers who bring expertise in chemistry, biology, data analytics, and social science to address the broad and complex CBRNE space.”

    The program calls for the development of highly sensitive detectors and advanced intelligence analytics to detect minute traces of various substances related to WMD threats. SIGMA+ will use a common network infrastructure and mobile sensing strategy, a concept that was proven effective in the SIGMA program. The SIGMA+ CBRNE detection network would be scalable to cover a major metropolitan city and its surrounding region.

    To uncover chemical and explosives threats, SIGMA+ seeks unprecedented long-range detection of hundreds of chemicals at trace levels to help authorities identify bomb-making safe houses in large urban areas, for example. Successfully developing scalable, long-range chemical sensors would help enable interdiction of improvised chemical and explosive threats or their constituent materials before an attack occurs.

    To quickly alert officials of a biological terror attack, such as the release of anthrax, smallpox or plague viruses, SIGMA+ seeks sensors that can detect, in real time, traces of a wide range of pathogens. The program aims to provide immediate, continuous monitoring of pathogen background levels and spikes, which could indicate malicious release of a biological agent.

    New environmental, as well as biomechanical and biochemical sensing methods for detecting threats could provide system sensitivity 10 times greater than the state-of-the-art, which would enable detection of a wider range of biological attacks days earlier, maximizing the effectiveness of countermeasures and prophylaxis. For natural pandemics, SIGMA+ sensing methods could yield awareness of major outbreaks weeks sooner than currently is possible.

    The program is structured around two Phases with two planned Broad Agency Announcement (BAA) solicitations. The first phase focuses on developing novel sensors for chemicals, explosives, and biological agents. The Phase 1 sensors BAA is expected to be released on FedBizOpps in March. The second phase focuses on network development, analytics, and integration. The Phase 2 BAA is expected to be released in late 2018.

    “If successful, SIGMA+ will demonstrate that automated, distributed networks of sensors, combined with automated intelligence analytics and insights from social science, can be deployed and practically scaled to significantly increase the probability of interdicting CBRNE WMD attacks,” said Tang.

    Bioterrorism Chemical Weapons DARPA SIGMA+ Program WMD
    Share. Facebook LinkedIn Reddit Email
    Previous ArticleNews Scan: Portable Biodosimetry, Horsepox Synthesis, Ebola PPE
    Next Article Stopping Pandemic X: DARPA Names Researchers Working to Halt Outbreaks

    Related Stories

    New Method Improves Quantification of Ricin in Complex Matrices

    September 20, 2023

    SOREX Brings Top CBRNE Units to Dugway Proving Ground

    September 20, 2023

    Biomarkers for Detection of Exposure to Nitrogen Mustards

    September 20, 2023

    Mass Spec for Rapid Detection of Biological Warfare Agents

    September 15, 2023
    News Scan

    Biodefense Headlines – 19 September 2023

    News Scan September 19, 2023

    News highlights on health security threats and countermeasures curated by Global Biodefense This week’s selections include a global survey of gain-of-function research; funding of an mRNA mpox vaccine; Nipah virus outbreak in India; field detection of threat agents with acoustic…

    Upcoming Events

    Oct 3
    Virtual Event Virtual Event
    October 3 - October 5

    OneLab Summit 2023

    Oct 3
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships to Distribute, Dispense, and Administer Medical Countermeasures

    Oct 4
    Virtual Event Virtual Event
    10:00 am - 2:00 pm EDT

    Tunneling Nanotubes and Intracellular Protrusions Workshop

    Oct 12
    Virtual Event Virtual Event
    12:00 pm - 2:00 pm EDT

    Public-Private Partnerships for Acceptance and Uptake of Medical Countermeasures

    View Calendar

    Subscribe to Global Biodefense

    Get the latest news on pathogens and preparedness

    © 2023 Stemar Media Group LLC
    • About
    • Contact
    • Privacy
    • Subscribe

    Type above and press Enter to search. Press Esc to cancel.