Friday, March 31, 2023
News on Pathogens and Preparedness
Global Biodefense
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe
No Result
View All Result
Global Biodefense
No Result
View All Result
Home Medical Countermeasures

Experimental MERS Coronavirus Vaccine Shows Promise

by Global Biodefense Staff
July 29, 2015

National Institutes of Health scientists are reporting positive results from a two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS).

The regimen prompted immune responses in mice and rhesus macaques, generating neutralizing antibodies against multiple strains of the MERS coronavirus (MERS-CoV), while vaccinated macaques were protected from severe lung damage when later exposed to MERS-CoV.

The findings suggest that the current approach, in which vaccine design is guided by an understanding of structure of viral components and their interactions with host cells, holds promise for developing a similar human MERS vaccine regimen.

The research team was led by Barney S. Graham, M.D., Ph.D., Wing-Pui Kong, Ph.D., and colleagues at the National Institute of Allergy and Infectious Diseases’ Vaccine Research Center.

Currently, no licensed vaccines are available for MERS, a disease that first appeared in 2012. An outbreak in the Republic of Korea that began in May has caused more than 180 confirmed infections, including 36 deaths, through July 15 as well as widespread social disruption.

The investigators used structural information about a viral protein called the spike (S) glycoprotein, which MERS-CoV uses to enter cells, to design a number of experimental vaccines that they administered to mice in a two-step regimen involving an initial “priming” injection followed several weeks later by the same or a different “booster” vaccine.

The three prime-boost regimens that elicited the most robust immune responses in mice were then tested in groups of macaques and were found to elicit similar immune system responses.

A separate group of 18 macaques (12 vaccinated, six unvaccinated) were exposed to MERS-CoV 19 weeks after the vaccinated animals received the boost injection. Although macaques do not develop overt MERS disease, the researchers observed that unvaccinated animals experienced lung abnormalities indicative of pneumonia that were more profound and longer lasting than those seen in the vaccinated animals.

The team is now working on refining the vaccine candidates and may eventually test a second-generation vaccine candidate in clinical trials.

Read more: Evaluation of candidate vaccine approaches for MERS-CoV.

Tags: CoronavirusEmerging ThreatsMERS-CoVVaccines

Related Posts

Medical Countermeasures

Scientists Design Molecule to Slow SARS-Cov-2 Infection

March 29, 2023
Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions
Pathogens

Influenza Proteins Tilt and Wave in ‘Breath-like’ Motions

January 25, 2023
DARPA Selects Teams to Develop Vaccine Durability Prediction Model
Medical Countermeasures

DARPA Selects Teams to Develop Vaccine Durability Prediction Model

January 13, 2023
small glass vials on an assembly line await filling of vaccine solution
Industry News

Sabin Vaccine Institute to Advance Ebola Sudan and Marburg Vaccines with New BARDA Funding

January 12, 2023
Load More

Latest News

Scientists Design Molecule to Slow SARS-Cov-2 Infection

March 29, 2023

Biodefense Headlines – 26 March 2023

March 26, 2023
Biodefense Headlines – 12 March 2023

Biodefense Headlines – 12 March 2023

March 12, 2023
Partner Therapeutics’ Novel Approach to Stratify Sepsis Patients Gains Backing From BARDA

Biopreparedness Research Virtual Environment (BRaVE) Initiative Backed by $105M DOE Funding

January 25, 2023

Subscribe

  • About
  • Contact
  • Privacy
  • Subscribe

© 2022 Stemar Media Group LLC

No Result
View All Result
  • Featured
  • COVID-19
  • Funding
  • Directory
  • Jobs
  • Events
  • Subscribe

© 2022 Stemar Media Group LLC